Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(19): 9926-9933, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38683632

RESUMO

Surface gel layers on commercially available contact lenses have been shown to reduce frictional shear stresses and mitigate damage during sliding contact with fragile epithelial cell layers in vitro. Spencer and co-workers recently demonstrated that surface gel layers could arise from oxygen-inhibited free-radical polymerization. In this study, polyacrylamide hydrogel shell probes (7.5 wt % acrylamide, 0.3 wt % N,N'-methylenebisacrylamide) were polymerized in three hemispherical molds listed in order of decreasing surface energy and increasing oxygen permeability: borosilicate glass, polyether ether ketone (PEEK), and polytetrafluoroethylene (PTFE). Hydrogel probes polymerized in PEEK and PTFE molds exhibited 100× lower elastic moduli at the surface (EPEEK* = 80 ± 31 and EPTFE* = 106 ± 26 Pa, respectively) than those polymerized in glass molds (Eglass* = 31,560 ± 1,570 Pa), in agreement with previous investigations by Spencer and co-workers. Biotribological experiments revealed that hydrogel probes with surface gel layers reduced frictional shear stresses against cells (τPEEK = 35 ± 15 and τPTFE = 22 ± 16 Pa) more than those without (τglass = 68 ± 15 Pa) and offered greater protection against cell damage when sliding against human telomerase-immortalized corneal epithelial (hTCEpi) cell monolayers. Our work demonstrates that the "mold effect" resulting in oxygen-inhibition polymerization creates hydrogels with surface gel layers that reduce shear stresses in sliding contact with cell monolayers, similar to the protection offered by gradient mucin gel networks across epithelial cell layers.


Assuntos
Propriedades de Superfície , Humanos , Hidrogéis/química , Polietilenoglicóis/química , Polímeros/química , Resinas Acrílicas/química
2.
ACS Appl Polym Mater ; 6(5): 2427-2441, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38481474

RESUMO

We demonstrate the utility of block polyelectrolyte (bPE) additives to enhance viscosity and resolve challenges with the three-dimensional (3D) printability of extrusion-based biopolymer inks. The addition of oppositely charged bPEs to solutions of photocurable gelatin methacryloyl (GelMA) results in complexation-driven self-assembly of the bPEs, leading to GelMA/bPE inks that are printable at physiological temperatures, representing stark improvements over GelMA inks that suffer from low viscosity at 37 °C, leading to low printability and poor structural stability. The hierarchical microstructure of the self-assemblies (either jammed micelles or 3D networks) formed by the oppositely charged bPEs, confirmed by small-angle X-ray scattering, is attributed to the enhancements in the shear strength and printability of the GelMA/bPE inks. Varying bPE concentration in the inks is shown to enable tunability of the rheological properties to meet the criteria of pre- and postextrusion flow characteristics for 3D printing, including prominent yielding behavior, strong shear thinning, and rapid recovery upon flow cessation. Moreover, the bPE self-assemblies also contribute to the robustness of the photo-cross-linked hydrogels; photo-cross-linked GelMA/bPE hydrogels are shown to exhibit higher shear strength than photo-cross-linked GelMA hydrogels. Last, the assessment of the printability of GelMA/bPE inks indicates excellent printing performance, including minimal swelling postextrusion, satisfactory retention of the filament shape upon deposition, and satisfactory shape fidelity of the various printed constructs. We envision this study to serve as a practical guide for the printing of bespoke extrusion inks where bPEs are used as scaffolds and viscosity enhancers that can be emulated in a range of photocurable precursors.

3.
J R Soc Interface ; 20(204): 20230160, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37403487

RESUMO

The ability of cells to reorganize in response to external stimuli is important in areas ranging from morphogenesis to tissue engineering. While nematic order is common in biological tissues, it typically only extends to small regions of cells interacting via steric repulsion. On isotropic substrates, elongated cells can co-align due to steric effects, forming ordered but randomly oriented finite-size domains. However, we have discovered that flat substrates with nematic order can induce global nematic alignment of dense, spindle-like cells, thereby influencing cell organization and collective motion and driving alignment on the scale of the entire tissue. Remarkably, single cells are not sensitive to the substrate's anisotropy. Rather, the emergence of global nematic order is a collective phenomenon that requires both steric effects and molecular-scale anisotropy of the substrate. To quantify the rich set of behaviours afforded by this system, we analyse velocity, positional and orientational correlations for several thousand cells over days. The establishment of global order is facilitated by enhanced cell division along the substrate's nematic axis, and associated extensile stresses that restructure the cells' actomyosin networks. Our work provides a new understanding of the dynamics of cellular remodelling and organization among weakly interacting cells.


Assuntos
Comportamento de Massa , Anisotropia , Divisão Celular
4.
Small ; 19(50): e2302794, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37428470

RESUMO

Shear-recoverable hydrogels based on block copolypeptides with rapid self-recovery hold potential in extrudable and injectable 3D-printing applications. In this work, a series of 3-arm star-shaped block copolypeptides composed of an inner hydrophilic poly(l-glutamate) domain and an outer ß-sheet forming domain is synthesized with varying side chains and block lengths. By changing the ß-sheet forming domains, hydrogels with diverse microstructures and mechanical properties are prepared and structure-function relationships are determined using scattering and rheological techniques. Differences in the properties of these materials are amplified during direct-ink writing with a strong correlation observed between printability and material chemistry. Significantly, it is observed that non-canonical ß-sheet blocks based on phenyl glycine form more stable networks with superior mechanical properties and writability compared to widely used natural amino acid counterparts. The versatile design available through block copolypeptide materials provides a robust platform to access tunable material properties based solely on molecular design. These systems can be exploited in extrusion-based applications such as 3D-printing without the need for additives.

5.
Surf Topogr ; 11(1)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37193116

RESUMO

Textured silicone breast implants with high average surface roughness ("macrotextured") have been associated with a rare cancer of the immune system, Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL). Silicone elastomer wear debris may lead to chronic inflammation, a key step in the development of this cancer. Here, we model the generation and release of silicone wear debris in the case of a folded implant-implant ("shell-shell") sliding interface for three different types of implants, characterized by their surface roughness. The "smooth" implant shell with the lowest average surface roughness tested (Ra = 2.7 ± 0.6 µm) resulted in average friction coefficients of µavg = 0.46 ± 0.11 across 1,000 mm of sliding distance and generated 1,304 particles with an average particle diameter of Davg = 8.3 ± 13.1 µm. The "microtextured" implant shell (Ra = 32 ± 7.0 µm) exhibited µavg = 1.20 ± 0.10 and generated 2,730 particles with Davg = 4.7 ± 9.1 µm. The "macrotextured" implant shell (Ra = 80 ± 10 µm) exhibited the highest friction coefficients, µavg = 2.82 ± 0.15 and the greatest number of wear debris particles, 11,699, with an average particle size of Davg = 5.3 ± 3.3 µm. Our data may provide guidance for the design of silicone breast implants with lower surface roughness, lower friction, and smaller quantities of wear debris.

6.
Angew Chem Int Ed Engl ; 62(16): e202301157, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36821552

RESUMO

Spatiotemporally functionalized hydrogels have exciting applications in tissue engineering, but their preparation often relies on radical-based strategies that can be deleterious in biological settings. Herein, the computationally guided design, synthesis, and application of a water-soluble cyclopentadienone-norbornadiene (CPD-NBD) adduct is disclosed as a diene photocage for radical-free Diels-Alder photopatterning. We show that this scalable CPD-NBD derivative is readily incorporated into hydrogel formulations, providing gels that can be patterned with dienophiles upon 365 nm uncaging of cyclopentadiene. Patterning is first visualized through conjugation of cyanine dyes, then biological utility is highlighted by patterning peptides to direct cellular adhesion. Finally, the ease of use and versatility of this CPD-NBD derivative is demonstrated by direct incorporation into a commercial 3D printing resin to enable the photopatterning of structurally complex, printed hydrogels.

7.
Langmuir ; 35(48): 15769-15775, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31659909

RESUMO

Protective mucin gel layers established by epithelial cell surfaces in biology have water contents above 90% and provide a low-shear stress nonadhesive interfacial boundary on epithelial surfaces throughout the body. Adhesion between gels and mucin layers, muco-adhesion, is an important aspect of drug delivery, biocompatibility, and the prevention of damage during insertion, use, and removal of medical devices in contact with moist epithelial surfaces. This manuscript develops a simple mathematical model to suggest that gel-adhesion and muco-adhesion are controlled by dehydration. For a fully swollen gel, the osmotic pressure is balanced by the elastic stress in the polymer gel, and differences in the elastic modulus are used to calculate dehydration stresses. A model based on Winkler contact mechanics gives a closed form expression for the force of adhesion that is dependent on the contact radius and gel thickness, inversely proportional to the mucin layer stiffness, and proportional to the square of the differences in elastic modulus. Submerged contact experiments conducted on Gemini gel interfaces of polyacrylamide aqueous gels showed increasing adhesion with increasing dehydration of the probe. Additionally, experiments conducted against mucinated epithelial cell monolayers found mucin transfer onto the most dehydrated gels and no transfer on swollen gels. The model and experiments reveal that high water content fully swollen gels are not intrinsically muco-adhesive, which is consistent with previous tribological experience showing increased lubricity with increasing water content and mesh size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...